

Advanced Thermal Conversion of MSW, Biomass and Low Value Feedstocks to Electricity and Fuels

Richard Bingham, Group Director, Prestige Thermal Energy (PTE)

www.prestigethermalenergy.com www.technothermsa.com





# PTE & TECHNOTHERM - SECOND GENERATION ENERGY FEEDSTOCKS & FUELS

PTE & Technotherm are manufacturers of waste conversion equipment committed to providing best of class conversion technologies

- True end of life solutions for plastics and tyres are offered through its plastics to diesel AND scrap tyres to oil technologies
- Both offer net zero waste solutions for Municipal Solid Waste (MSW) and other problematic waste streams
  - Only inerts remain allowing for net zero waste, inerts can be used in road aggregate, brick-making, or combined with resins for particle board
  - Landfill gas (LFG) can be converted to energy until it is eliminated
  - Automated sorting system removes recyclables leaving only biomass

PTE & Technotherm projects convert waste and low value fuels to energy (WTE); clean syngas, electricity, diesel, gasoline, other fuels and products such as high grade oil, and recyclables.

CONVERTING A WASTE LIABILITY TO AN ENERGY ASSET





#### WASTE MATERIALS PROCESSED AND END PRODUCTS

#### **MATERIAL PROCESSED**

Municipal Solid Waste (MSW)

Wood

Plastic & Tires

Agricultural and Animal Waste

Organics
e-Waste

Construction & Demolition Debris

Medical & Toxic Waste (Exc. Nuclear)

Sewage Sludge and Cake

Oily Sludge, Contaminated Oil

Heavy Residual Fuels, Vacuum Tank Bottoms

Recyclable Plastic Non-recyclable Plastic; Agrifilm & Plastic, Mixed Plastics, Composites

Scrap Tires

#### END PRODUCT

Electricity or Drop in Fuels; ASTM D975 No. 2 ULSD, Gasoline

ASTM D975 Diesel-No.2 ULSD No. 1 Diesel/Kerosene/Naphtha Bunker C Fuel

Refinery Grade Oil Recycled Carbon Black (rCB) Recovered Steel Wire





PTE & Technotherm's Pyrolysis Technology Offers Superior Energy & Conversion Efficiency

Increased Waste to Energy Conversion Efficiency ("WTE CE") means less CO2







#### Advanced Recycling and Energy Conversion Technology (AREC)

- Waste is pre-processed, sterilized, and sorted via a fully automated system
- Both Phase and Flash Pyrolysis systems produce high calorific value syngas that is cleaned and converted to electricity or a drop in fuel.
- Single stack stack emissions < Federal and California Air Quality Standards.











#### **Emissions meet or Exceed Both US EPA and CA Regulations**

Continuous Emissions Monitoring Equipment on Exhaust Stack (sole point of emissions)

| Contaminant                                                                             | US EPA Primary Limits                                | California Limits                                                                                            | European Limits       | AREC Technology Typical Result                                                                           | AREC Technology Result With Further Abatement                       |
|-----------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| CO (8 hr)                                                                               | 9 ppm (10 mg/m³)                                     | 9 ppm (10 mg/m <sup>3</sup> )                                                                                | 50 mg/m <sup>3</sup>  | Less than 9 ppm                                                                                          | less than 9 ppm                                                     |
| SOx (1 hr)                                                                              | 75 ppb (196 µg/m³)                                   | .25 ppm(655µg/m³)                                                                                            | 50 mg/m <sup>3</sup>  | negligible                                                                                               | negligible                                                          |
| SOx (24 hr)                                                                             |                                                      | .04 ppm(105 μg/m³)                                                                                           |                       | negligible                                                                                               | negligible                                                          |
| NOx (1 hr)                                                                              | 100 ppb (188 mg/m³)                                  | .18 ppm (339μg/m³)                                                                                           | 200 mg/m <sup>3</sup> | 18.7ppm                                                                                                  | less than 0.1 ppm                                                   |
| NOx (Ann. Arithmetic Mean)                                                              | .053 ppm (100μg/m³)                                  | .030 ppm (57μg/m³)                                                                                           |                       |                                                                                                          |                                                                     |
| Dioxins & Furans                                                                        | 0.00003 μg/liter                                     |                                                                                                              | 0.1 ng/m <sup>3</sup> | negligible                                                                                               | negligible                                                          |
| Solid Particulates PM10 (24 hr)                                                         | 150 μg/m³                                            | 50 μg/m³                                                                                                     | 10 mg/m <sup>3</sup>  | 100 μg/m³                                                                                                | less than 10ug/m3                                                   |
| Solid Particulates PM10 Ann.<br>Arithmetic Mean                                         | NA                                                   | 20 μg/m³                                                                                                     |                       |                                                                                                          |                                                                     |
| Volatile Organic Compounds<br>(VOCs)                                                    | 0.075 ppm                                            |                                                                                                              | 0.1 ng/m <sup>3</sup> | negligible                                                                                               | negligible                                                          |
| Total Organic Carbon (TOC)                                                              |                                                      |                                                                                                              | 10 mg/m <sup>3</sup>  | negligible                                                                                               | negligible                                                          |
| Hydrogen Chloride (HCI)                                                                 |                                                      |                                                                                                              | 10 mg/m <sup>3</sup>  | negligible                                                                                               | negligible                                                          |
| Hydrogen Fluoride (HF)                                                                  |                                                      |                                                                                                              | 1 mg/m <sup>3</sup>   | negligible                                                                                               | negligible                                                          |
| Lead (Pb)                                                                               | 0.15 μg/m3(rolling 3-mo.avg)                         | 1.5 μg/m3(30-day avg.)                                                                                       | 0.5 mg/m <sup>3</sup> | negligible                                                                                               | negligible                                                          |
| NOx will be further abated using a catalyst on the engine exhaust and urea in the Re Ox | Particulates can be further abated using a bag house | CO Levels will be <9 ppm by optimizing and monitoring the stoichiometric conditions on all heatinput systems | the                   | The technology has only limited emissions without further abatement, thus natural result exhibited above | The abatement required is very small compared to other technologies |





Superior thermal technologies



PTE and Technotherm develop end to end systems; front ends vary with feedstock Syngas can be converted to electricity or fuels
Internally generated heat is used and reused & water is recycled



# PTE

#### **Autoclave Technology**

- Waste is fed into an autoclave in 29 ton batches, loading @ 70% capacity in 15 minutes
- Pressurized saturated steam (160°C and 5.2 bar) "pressure-cooks" the waste for 50 minutes, resulting in a very high pathogen and virus kill rate
- Steam is stored at 17 bar insuring availability on demand
- System designed to duplex, saving 40% operational energy
- Sealed unit; no emissions or odors
- Deglazes cans, removes labels from bottles and cans, further enhancing resale value



#### **Dryer Technology**

- Reduces moisture to increase pyrolyzer efficiency
- Recycled heat keeps drying costs low
- Twin drum design allows loading and unloading from one end
- Sealed hopper and auger for material handling eliminates dust
- Internal tumblers and compression plates homogenize feedstock
- Accurate moisture content achieved through exhaust control





#### **Pyrolyzer**

- Dried cellulose fiber material is thermally decomposed in seconds at high temperature in the absence of oxygen to produce a synthetic gas or "syngas"
- Pre-pyrolyzer, pre-heats material; inner drum is rotated within a heated outer vessel. Outer vessel temperature and speed of rotation allows precise control of exit temperature
- Pyrolyzer unit consists of a totally sealed inner unit surrounded by a heated outer vessel. After initial startup on external fuel, the pyrolyzer is heated to 950°C and kept at temperature using internally generated syngas
- Syngas is proceed in an advanced gas clean-up system

#### Thermal Oxidizer

- Exhaust gases from the pyrolyser burners, dryers, engines and turbines are sent to the regenerative thermal oxidizers to remove pollutants to a level of less than 16 parts/million
- Energy consumed is approximately 15% of competitive designs
- All volatile organic compounds are removed
- NOx can be reduced by 90%











Advanced Recycling and Energy Conversion Technology (AREC)
Patented Best of Class Systems for Waste Conversion

- Achieves essentially 100% recycling via a fully automated system
  - No need for separate collections or bins
  - Recyclables are sterile with 98% purity or  $\sim 2\%$  impurities
- Net Zero Waste: 90-100% landfill diversion; inerts remain for sale (use) or landfill
- Cost effectively utilizes LFG or methane in adjacent landfills until it is eliminated
- Pyrolysis Technology leaving no tar or ash
- Medical waste can be accepted via quarantined conveyor
- Emissions meet or exceed Best Available Control Technology
- Projects can be designed to produce electricity, diesel fuel, gasoline or a mixture of final products, insuring financial viability
- Optional Plastics to Diesel Unit (PTD) converts plastics to ASTM D975 No.2 ULSD
- Systems are manufactured off site & shipped in modules, subject to permitting
  - MSW plant  $\sim$ 18 -24 months from order to commercial operations
  - Gen Tech PTD unit ~ 10-15 months from order to commercial operations
- · Produces clean, renewable, low carbon fuels and electricity from waste
  - 98% expected availability with a guarantee of 90% up time





#### **Contact Information**

www.prestigethermalenergy.com www.technothermsa.com

Richard Bingham, Group Director

richard@pfe-online.co.za technical@technotherm.co.za

Cell: +27 82 701 4592

